Quantcast
Channel: Active questions tagged feed-forward+tensorflow+machine-learning - Stack Overflow
Viewing all articles
Browse latest Browse all 7

single neuron feed forward network in tensorflow

$
0
0

I made a feed forward single neuron network. The prediction prints 0.5 while it should print 0.0. I'm very new to tensorflow. Please help me. This is my code:

"""
O---(w1)-\
          \
O---(w2)-->Sum ---> Sigmoid ---> O  3 inputs and 1 output
          /
O---(w3)-/

          |   Input     | Output
Example 1 | 0   0   1   |   0   
Example 2 | 1   1   1   |   1
Example 3 | 1   0   1   |   1
Exmaple 4 | 0   1   1   |   0

"""

import tensorflow as tf

features = tf.placeholder(tf.float32, [None, 3])
labels = tf.placeholder(tf.float32, [None])

#Random weights
W = tf.Variable([[-0.16595599], [0.44064899], [-0.99977125]], tf.float32)

init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)

predict = tf.nn.sigmoid(tf.matmul(features, W))

error = labels - predict

# Training
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(error)

for i in range(10000):
    sess.run(train, feed_dict={features: [[0, 1, 1], [1, 1, 1], [1, 0, 1], [0, 1, 1]], labels: [0, 1, 1, 0]})

training_cost = sess.run(error, feed_dict={features: [[0, 1, 1], [1, 1, 1], [1, 0, 1], [0, 1, 1]], labels: [0, 1, 1, 0]})
print('Training cost = ', training_cost, 'W = ', sess.run(W))

print(sess.run(predict, feed_dict={features:[[0, 1, 1]]}))

I've also manually made this model using only numpy which works well.

Edit: I've tried all types of cost function including​ tf.reduce_mean(predict-labels)**2)


Viewing all articles
Browse latest Browse all 7

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>